Missions for Cubesats

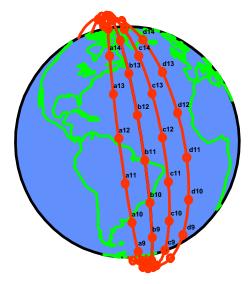
Siegfried W. Janson

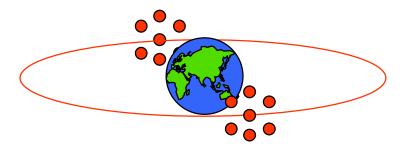
Center for Microtechnology, The Aerospace Corporation El Segundo, California (USA)

April 5, 2002

Nanosat (or CubeSat) Applications:

LEO Constellations


- Low-resolution Earth imaging
- Communications relay
- Space science measurements


Single Satellite Missions

- Co-orbital satellite assistant
- Technology testbeds

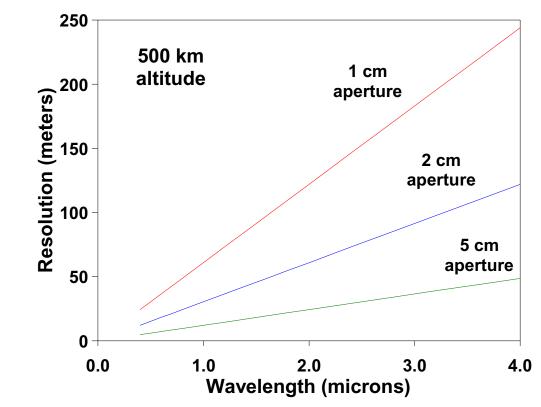
Local Clusters

- RF interferometry

CubeSat Applications in LEO Constellations:

Earth observation at 10-to-1000 meter resolution

- Revisit times of 15 minutes possible
- Several bands per satellite possible
- Visible, near-IR, and mid-IR possible
- NOAA and METEOR APT and HRPT replacement (VHF, L-band)
- Launch on demand for emergency replacements


Communications

- Store-and-forward messaging
- Remote sensor readout

What Can A Cubesat See?

Diffraction-Limited Optical Resolution:

Ground resolutions down to 10 meters in the visible are possible using 2" optics on a CubeSat.

Example Wavelength Bands for Earth Observation

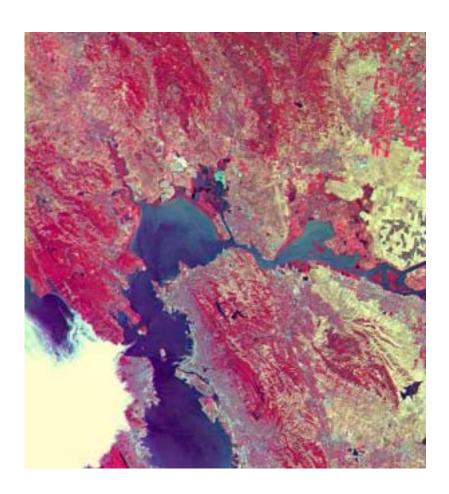
Wavelength (microns)	Mission Applications				
0.5 - 0.7	Visible features (clouds + snow, landmasses)				
1.5 - 1.7	Cloud/snow differentiation				
3.5 - 3.9	Fire detection, sea and land temperature				
10.5 - 11.3	Cloud top temperatures				

What Can A Cubesat See?

Linear imager, e.g., low Earth orbit weather satellites

500 pixels, 500-meter ground resolution, 250-km wide swath, 30° FOV 64 kbit/s data rate @ 8-bits/pixel

2-D imager


Imager Density	Pixel Spacing	lmager Size F	Ground Resolution	Field of View	Image Depth	Data per Image
640 x 480	$7.4~\mu$	4.7 x 3.6 mm	50 m	3.7° x 2.8°	10 bits	3.1 Mbit
1280 x 1024	10 μ	12.8 x 10.2 mm	25 m	3.7° x 2.9°	12 bits	15.7 Mbit
1280 x 1024	10 μ	12.8 x 10.2 mm	n 10 m	1.5° x 1.2°	12 bits	15.7 Mbit

Example Microsat Multi-Spectral Image

- TMSAT image
 - Surrey Satellite microsat
 - Combined green, red, near IR
 - 1020 x 1020 pixels

San Fransisco at 98-meter resolution http://www.sstl.co.uk/services/mn_san_fransisco.html

NOAA Weather Satellites: 4-km Resolution

NOAA-12: ~6:00 AM and 5:40 PM

AM passes: Southbound

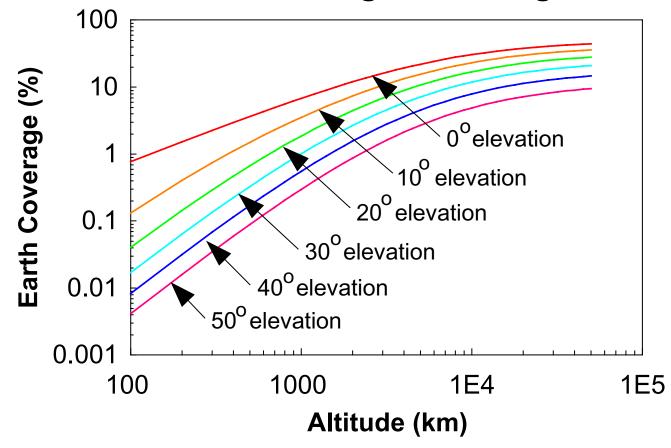
NOAA-14: ~6:40 AM and 6:00 PM

PM passes: Northbound

NOAA-15: ~9:00 AM and 8:10 PM

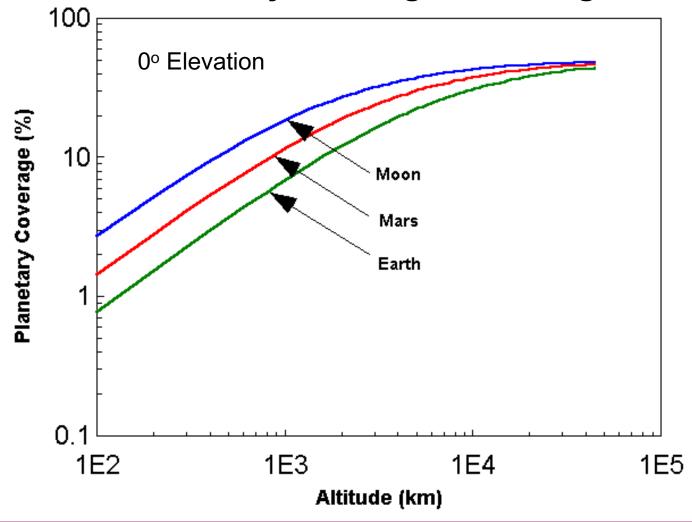
Automatic picture transmission (APT) mode provides 4-km ground resolution in two wavelength ranges (visible and near IR) in a line-by-line format. The spacecraft transmits at 137.50 or 137.62 MHz at 4 Watts using an FM carrier. Modest ground antennas are required.

Sound card demodulator software: WXSAT

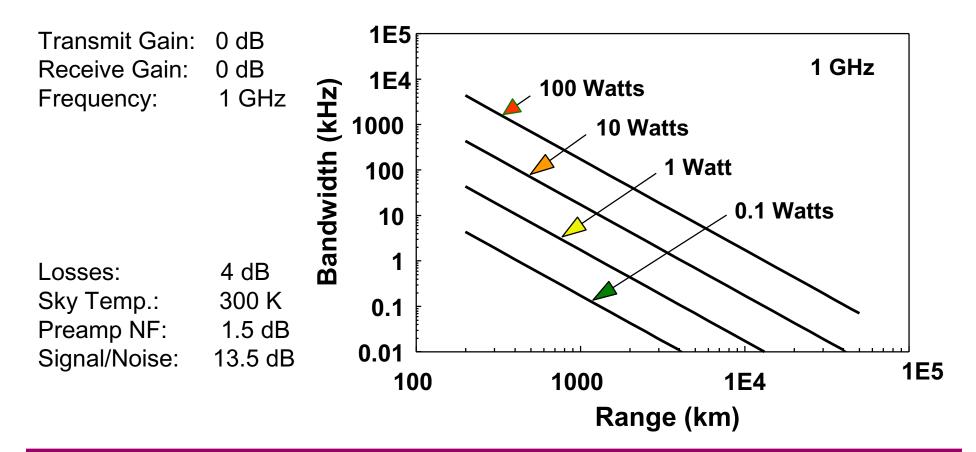

http://www.hffax.de/WX_Satellite/WXSat/wxsat.html

Additional information:

http://www.riglib.demon.co.uk/guide.htm


Geometric Earth Coverage for a Single Satellite

You need several hundred satellites in LEO (<1000 km altitude) to provide at least one satellite 40° above the horizon world-wide.



Geometric Planetary Coverage for a Single Satellite

Satellite Downlink Bandwidth

© 2002 The Aerospace Corporation All Rights Reserved

Downlink Limitations

- Typical micro/nanosat transmits 1-10 W at UHF
 - Omnidirectional or low-gain antennas on satellite
 - Adequate for voice link using ~20" whip antenna on ground
 - Adequate for 9600 bps data using 2-to-3 foot long helix on ground
 - 1 Megabit/sec would require a 15' dia. dish on ground
 - Bandwidth is usually a problem at UHF
- Higher power transmitter not an option for CubeSats
 - A CubeSat will operate with a ~1 Watt power budget
 - Low duty cycle operation at high power may be possible
- Higher frequencies will force use of tracking antennas on ground

Co-Orbital Satellite Assistants (COSAs)

- Small spacecraft ejected from a platform
- Small spacecraft maneuvers about platform
 - Imaging of platform
 - On-orbit calibration of sensors
 - Close-range mapping of rf/microwave/optical emissions
 - Low ΔV requirements (~1 meter/second)
- COSAs have flown and are evolving
 - Inspector (Mir)
 - Aercam (U.S. Space Shuttle Columbia)
 - MEMS Satellite Inspector (AFRL; under development)

Co-orbital Motion:

Semimajoraxis := 7078.16 mu := 398601.8 omega :=
$$\left(\frac{\text{mu}}{\text{Semimajoraxis}^3}\right)^{0.5}$$
 omega = $1.06 \cdot 10^{-3}$

$$s0 := 0$$

$$t0 := 0$$

$$z0 := 0$$

$$t0 := 0$$
 $z0 := 0$ $dt := 180$ $vs0 := 0.003$

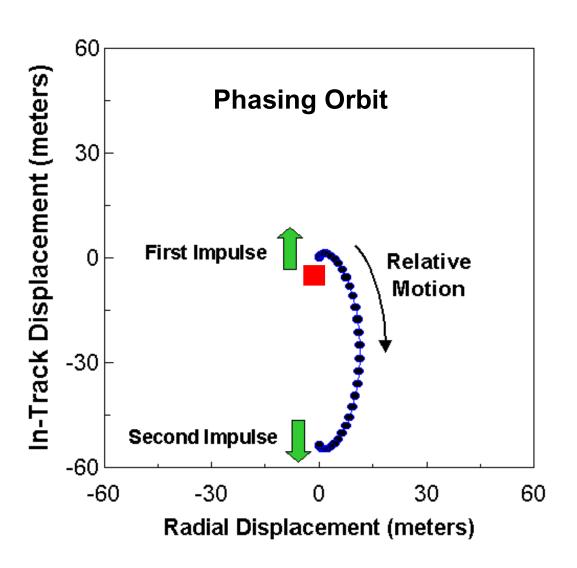
$$v_t0 := 0.0$$

$$vz0 := 0.0$$

$$i := 0...33$$

$$s_{i} \coloneqq s0 + \left[2 \cdot vr0 \cdot \frac{(1 - \cos(\sigma ega \cdot i \cdot dt))}{\sigma ega}\right] + \left[\left[4 \cdot \frac{vs0}{\sigma ega} - (6 \cdot r0)\right] \cdot \sin(\sigma ega \cdot i \cdot dt)\right] + \left(\left(6 \cdot \sigma ega \cdot r0\right) - (3 \cdot vs0)\right) \cdot i \cdot dt\right)$$

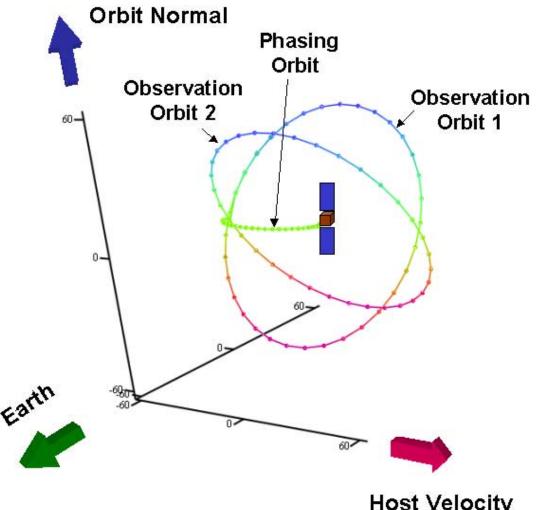
$$r_{i} \coloneqq (4 \cdot r0) - \left(2 \cdot \frac{vs0}{omega}\right) + \left[\left(2 \cdot \frac{vs0}{omega}\right) - (3 \cdot r0)\right] \cdot cos(omega \cdot i \cdot dt) + \left(vr0 \cdot \frac{sin(omega \cdot i \cdot dt)}{omega}\right)$$


$$z_{i} := \left(vz0 \cdot \frac{\sin(omega \cdot i \cdot dt)}{omega}\right) + (z0 \cdot \cos(omega \cdot i \cdot dt))$$

Co-orbital Motion:

Phasing orbit:

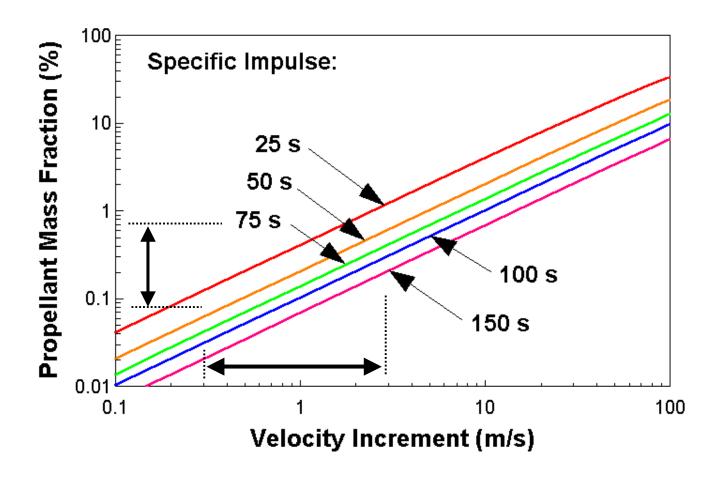
- 1st impulse: 3 mm/s
- 2nd impulse: 3 mm/s
- 99 minutes @ 700 km
- mN thrust levels



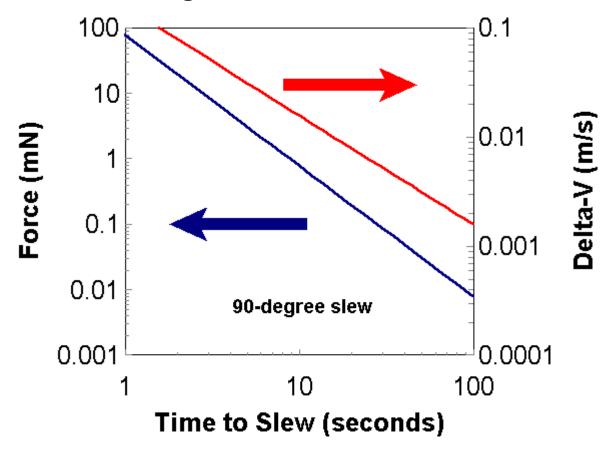
Co-orbital Motion:

Observation orbits:

- Total: ~180 mm/s


- mN thrust levels

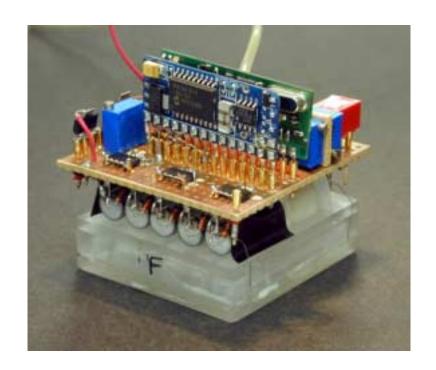
Host Velocity


Propellant Requirements: Less than 1%

Attitude Control Requirements

2" Cube Cold Gas Thruster System:

6 Thrusters


- X-Y translation, Z-rotation
- 5 valves
- 10-mN thrusters
- 10-ms minimum cycle

MEMS IMU

- Rate gyro (Analog Devices)
- Accelerometers (Analog Dev.)

RF communications

- 9600 bps
- Uplink/downlink

Summary:

- CubeSats could perform Earth observation missions
 - 10-1000 km ground resolution (visible)
- CubeSats could perform the COSA mission
 - Very low propulsion system requirements

